
Dynamic Programming

Many modern optimization problems involve large number of variables and/or
constraints. Solutions of such problems often involve rather lengthy compu-
tations, and some of the solution techniques may even turn out to be com-
putationally infeasible. Dynamic Programming (DP) is an approach that is
designed to economize the computational requirements for solving large prob-
lems. The basic idea in using DP to solve a problem is to split up the problem
into a number of stages. Each stage is associated with one subproblem, and
the subproblems are linked together by some form of recurrence relations.
The solution of the whole problem is obtained by solving these subproblems
using recursive computations.

The development of DP in its early stages was largely due to Richard
Bellman, whose book “Dynamic Programming” was published in 1957. Since
then, DP has been found to be applicable to a whole variety of problems and
is especially suited for the solution of the class of problems requiring interre-
lated decisions, i.e. decisions which must be made in a sequence and which
influence future decisions in that sequence. DP is very simple in concept; the
main difficulty in applying this approach, however, is the lack of a clear-cut
formulation and solution algorithm. Consequently, we shall try to acquaint
ourselves with this approach through the study of a wide variety of examples.

1 A Simple Path Problem

We begin with a problem seeking the shortest path from one physical location
to another.

Example 1. Suppose that we have to find the shortest path from A to B given
in Figure 1 (the numbers in Figure 1 are the lengths of the arcs). We could,
of course, solve this problem by enumerating all possible paths from A to
B, adding up the lengths of each, and then choosing the smallest such sum.
Brute-force methods like this are usually referred to as enumeration methods.
Alternatively, let us consider the more efficient DP approach:

Let us define S(A) to be the length of the shortest path from A to B.
Similarly, S(i) is the length of the shortest path from node i to B for every
node i. We try to establish relations between S(A) and S(i) by making the
following observation. If the shortest path from a node i to B passes through
a node j, then the section of this path from node j to B must also be a
shortest path from node j to B. In fact, if it is not, then we can replace the
section by the shortest path from node j to B to get a short path from node
i to B.



2 MAT3220 Operations Research and Logistics

Fig. 1. Network for Example 1

With this observation, we can assert that

S(A) = min{aAC + S(C), aAD + S(D)}, (1)

where aAC and aAD are the arclengths from node A to C and to D respec-
tively. This is because the shortest path from A to B must either pass through
node C or D. If the shortest path passes through C, then S(A) = aAC+S(C)
by the above observation; otherwise S(A) = aAD + S(D). Hence S(A) must
be equal to the minimum of aAC + S(C) and aAD + S(D).

Repeating this argument, we can set up a recurrence relation as follows:

S(A) = min{3 + S(C), 2 + S(D)}
S(C) = min{7 + S(E), 6 + S(F )}
S(D) = min{9 + S(F ), 5 + S(G)}

...

S(O) = 4 + S(B)

S(P ) = 3 + S(B).

Clearly we can see that S(B) = 0. We can compute the values of S(i)
recursively by considering nodes further and further away from B:

S(O) = 4 + S(B) = 4; S(P ) = 3 + S(B) = 3

S(L) = 7 + S(O) = 11; S(M) = min{4 + S(O), 10 + S(P )} = 8;

S(N) = 6 + S(P ) = 9; · · ·
S(A) = min{3 + S(C), 2 + S(D)} = 25.



Dynamic Programming 3

In the process of calculating the values of the function S, say S(M), the
value S(M) is obtained from the term 4+S(O) since 4+S(O) < 10+S(P ).
Consequently we know that the next node on the shortest path from M to
B must be O. To keep track of this, we define a function P (i) to be the next
node on the shortest path from node i to B. Thus P (M) = O. Similarly we
can find P (i) at every node i when we are calculating S(i).

The solution of the simple shortest path problem is now readily seen.
The length of the shortest path from A to B is given by S(A) = 25. The
shortest path is obtained by following the direction given by P (i). P (A) = C;
P (C) = F ; P (F ) = J ; P (J) = M ; P (M) = O; P (O) = B. So the shortest
path is A− C − F − J −M −O −B.

2 Terminology and Comments

The procedure described in the previous section is quite a typical DP solution
procedure. Let us now introduce some terminology and comments associated
with this procedure.

(i) Optimal value function: The function S(i) in Example 1 is called an op-
timal value function, and i is called the argument of the function. To
seek the value of S(i) at some node i is then a subproblem of the original
problem. There is no fixed rule as to the setting up of these optimal value
functions. Different ways of defining these optimal value functions may
mean different ways of splitting up the given problem into subproblems.
As in the above example, we could have defined the optimal value func-
tion S(i) to be the length of the shortest path from node A to i, see
Exercise 2 below.

(ii) Principle of optimality: In Example 1, we define an optimum path as
the shortest path. If we had defined an optimum path as the path of
longest length (lowest cost, highest cost, etc.), we could still use the same
technique to find the optimum path. The key feature here is that “any
subpath of an optimum path must be optimum itself from the current
state to the final stage”. This seemingly obvious statement can be gen-
eralized to many other problems, such as multistage decision problems,
allocation processes, and so forth. Instead of using the word “path”, we
use the word “policy” which is more suitable to decision problems. This
idea has been called the “principle of optimality” by people using DP and
it says:

Any subpolicy of an optimum policy from any given state must
itself be an optimum policy from that state to the terminal
state(s).

In other words, the subpolicy from a given state to the terminal state(s)
is independent of the policy adopted previously.



4 MAT3220 Operations Research and Logistics

(iii) Recurrence relation (Functional equation): If an optimal value function
has been suitably chosen, then using the principle of optimality one will
be able to define a recurrence relation between the values of the optimal
value function. The existence of such a recurrence relation makes DP well
suited to computer solutions, as Richard Bellman mentioned in his book
Applied Dynamic Programming that DP is “a new approach based on
the use of functional equations and the principle of optimality, with one
eye on the potentialities of the burgeoning field of digital computers”. In
Example 1, the recurrence relation at the node A takes the form

S(A) = min{aAC + S(C), aAD + S(D)}.

At this node, one can decide to go “up” along the arc AC or go “down”
along the arc AD. Should the decision be “up”, then the length of the
path is the sum of aAC and the optimal length of the remaining path. In
DP terminology, aAC denotes the immediate return of the decision “up”.
The optimal value (e.g. S(A)) is therefore given by choosing the decision
that optimizes the sum of the immediate return and the optimal value of
the remaining process.

(iv) Boundary conditions: Using the recurrence relation, the values of the op-
timal value function at different arguments can be found one by one. Of
course, the process must start with arguments at which the values of the
optimal value function are obvious, and these obvious values are called
the boundary conditions, e.g. S(B) = 0 is obvious in Example 1.

(v) Optimal policy function: The rule that associates the best first decision
with each subproblem—the function P in Example 1—is called the opti-
mal policy function.

Using these jargons, to solve a problem by means of DP can be described
simply as follows:

1. Define an optimal value function.
2. Using the principle of optimality, determine a recurrence relation.
3. Identify the boundary conditions. Starting with the boundary conditions,

and using the recurrence relation, determine concurrently the optimal
value and policy functions.

4. Determine the solution of the problem by using the optimal value and
policy functions.

This procedure seems very simple. However, the main difficulty when using
DP is in choosing a suitable optimal value function for which a recurrence
relation can be determined; there is no fixed rule to follow and it really
depends on one’s ingenuity to apply this technique successfully.

Let us point out one major difference between DP and LP: LP refers
to a specific mathematical model (i.e. an optimization problem with linear
objective function and linear constraints) that can be solved by a variety of



Dynamic Programming 5

techniques, most notably being the simplex method. DP deals with a partic-
ular analytic approach, which can be applied to a variety of mathematical
models.

Exercise 2. Notice that for a given problem, one can have different ways to
define the optimal value function. Solve the simple shortest path problem in
Figure 1 with the optimal value function T (i) defined to be the length of the
shortest path from node A to i.

Example 3. DP is a versatile approach. Once we grasp the main idea, we
can solve many similar but more complicated problems that are seemingly
difficult to solve. Consider the shortest path problem in Figure 1 again. But
let us redefine the cost of a path to be the largest cost between two nodes on
the path. If we let S(i) be the length of the shortest path from node i to B
for every node i, where the length is measured using the new definition, then
instead of (1), we have

S(A) = min{max{aAC , S(C)},max{aAD, S(D)}}.

Similarly, we can establish the recurrence relation for other nodes. Obviously,
the boundary condition is still S(B) = 0. From that we can get the optimal
solution S(A) = 6 and the optimal path is A−C − F − I −M −O−B and
A−D −G−K −N − P −B.


